RECEIVED-WATER SUPPLY

2019 CERTIFICATION MAY -6 AM \$47
Consumer Confidence Report (CCR)

Homewood WATER	ASSC
Public Water System No.	
List PWS ID #s for all Community Water Sys	ems included in this CCR
The Federal Safe Drinking Water Act (SDWA) requires each Community	
a Consumer Confidence Report (CCR) to its customers each year. Deper must be mailed or delivered to the customers, published in a newspaper of request. Make sure you follow the proper procedures when distributing the mail, a copy of the CCR and Certification to the MSDH. Please check	f local circulation, or provided to the customers upon the CCR. You must email, fax (but not preferred) or
Customers were informed of availability of CCR by: (Attach	
☐ Advertisement in local paper (Attach cop	
☐ ☐ On water bills (Attach copy of bill)	
☐ Email message (Email the message to the	e address below)
☐ Other	
Date(s) customers were informed: 4/19/2020	/ /2020 / /2020
CCR was distributed by U.S. Postal Service or other direct methods used	ect delivery. Must specify other direct delivery
Date Mailed/Distributed: / /	
CCR was distributed by Email (Email MSDH a copy)	Date Emailed: / / 2020
□ □ As a URL	(Provide Direct URL)
☐ As an attachment	
☐ As text within the body of the email mess	sage
U CCR was published in local newspaper. (Attach copy of publ	ished CCR or proof of publication)
Name of Newspaper: Scott County Times.	
Date Published: 4 / 29 / 2020	
CCR was posted in public places. (Attach list of locations)	Date Posted: / / 2020
CCR was posted on a publicly accessible internet site at the fe	ollowing address:
	(Provide Direct URL)
CERTIFICATION I hereby certify that the CCR has been distributed to the customers of this above and that I used distribution methods allowed by the SDWA. I further and correct and is consistent with the water quality monitoring data provided of Health, Bureau of Public Water Supply	
Ausanborg	53 2020 Date
Name/Title (Board President, Mayor, Owner, Admin. Contact, etc.) Submission options (Select one	
Mail: (U.S. Postal Service)	Email: water.reports@msdh.ms.gov
MSDH, Bureau of Public Water Supply P.O. Box 1700 Pageson, MS 30215	Fax: (601) 576 - 7800 **Not a preferred method due to poor clarity**

CCR Deadline to MSDH & Customers by July 1, 2020!

2019 Annual Drinking Water Quality Report Homewood Water Association

PWS#: 620006 April 2020 APR 2 7 2019

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Meridian Upper Wilcox aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Homewood Water Association have received lower to moderate rankings in terms of susceptibility to contamination.

If you have any questions about this report or concerning your water utility, please contact David Foreman at 601.536.2729. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Tuesday of each month at 7:00 PM at Homewood Community Building.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2019. In cases where monitoring wasn't required in 2019 the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) — The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

				TEST RESU	ЛLTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG/ MRDLG	MCL	Likely Source of Contamination
Inorganic	Contami	inants						
10. Barium	N	2019	.0037	.00130037	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries

13. Chromium	N	2019	.6	No Range	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N	2015/17*	.1	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2019	.341	.276341	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2015/17*	√1 -	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits

Disinfection By-Products

81. HAA5	N	2018*	6	No Range	ppb	0	60	By-Product of drinking water disinfection.
Chlorine	N	2019	.8	.5 - 1	mg/l	0	MDRL = 4	Water additive used to control microbes

^{*} Most recent sample. No sample required for 2019

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminants have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific contaminants on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1.800.426.4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1.800.426.4791.

The Homewood Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

	ee			

(See Attached)

AFFIDAVIT OF PUBLICATION

State of Mississippi

County of Scott AFFIDAVIT OF PUBLICATION On the Quay of Personally came Charlene Stinson, clerk, Of The Scott County Times, a weekly newspaper established more than twelve months before the date first hereinafter mentioned, printed and published in the City of Forest, County of Scott, State of Mississippi, before Me, the undersigned authority in and for said County, Who being duly sworn, deposes and says that a certain Legal ad A copy of which is hereto attached, was published in said consecutive weeks, to wit:

, 2020 . 2020 . 2020

Signed Charles Str

		1 (41) April 1				70H	1 /1
Swo	rn to	and s	ubscrib	ed before	me this	<u>, 294</u>	day
49.430.0							<u> </u>
Of	Λŀ	י ו־אַנ			,	2020.	
	1	/-	Sarar et al.	rick of Street			

Le ane Palner

X Inder de Public

LEE ANNE LIVINGSTON PALMER CHANCERY CLERK, SCOTT CO., MS MY COMMISSION EXPIRES JAN. 1, 2024

2019 Annual Drinking Water Quality Report Homewood Water Association PWS#: 620006 April 2020

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we desiver to you every day. Our constant goel is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Meridian Upper Wilsox squifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its chinking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Homewood Water Association have received lower to moderate rankings in terms of susceptibility to contamination.

If you have any questions about this report or concerning your water utility, please contact David Foreman at 801.538.2729. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Tuesday of each month at 7:00 PM at Homewood Community Building.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2019. In cases where monitoring wasn't required in 2019 the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; including incominants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come runoff, industrial processes and petroleum production, and can also come from gas synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas synthetic and volatile organic chemicals, which can be naturally occurring or be the result of oil and gas production and mining stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activitie

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Conteminent Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best svaliable treatment technology.

Meximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Meximum Residual Disinfectant Level (MRDL) — The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants.

Maximum Residual Distribution Level Goal (MRDLG) — The level of a drinking water distribution below which there is no known or expected risk of health: MRDLGs do not reflect the benefits of the use of distributions to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or hillcrograms per litter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

				TEST RESU			· · · · · · · · · · · · · · · · · · ·	La La of Contemporation
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MICLG/ MIRDLG	MCL	Literly Source of Contamination
Inorganic C	ontami	inants						
10. Barlum	N	2019	.0037	.00130037	ppm	2	2	Discharge of driffing wastes; discharge from metal refineries; erceion of natural deposits
		an and a significant and a sig	The state of the s	Suc. y				Discharge from steel and pulp
13. Chromium	N	2019	.6	No Range	ppb	100	100	mile; erosion of natural deposits
14. Gopper	N	2015/17*	: :1	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
18. Fluoride	N	2019	.341	276 - 341	ppm	4	4	Erosion of natural deposits; wat additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2015/17*	1	0	ppb	0	AL=15	